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Abstract-The Marangoni flows are studied by numerical simulation in a liquid layer with an undeformable 
free upper surface heated by a constant flux and with a rigid bottom at constant temperature. MuItiroIIs 
structures with different symmetry properties are exhibited in the case of a one-component fluid. More 
insight is given to the situation with an aspect ratio A = 4 with the determination of bifurcations up to a 
time dependent flow. The focus of the study is on the influence of the Soret effect on the flow structure 
when the fluid is a non-reactive binary mixture. Stationary results are compared to the expected behaviour 
given by previous linear stability analyses. Situations where time dependent flows occur as first bifurcation 
are also computed : an interesting behaviour corresponding to the successive apparition of new rolls in the 

middle and on the sides of the cavity is obtained, for which a physical interpretation is proposed. 

1. INTRODUCTION 

OUR PURPOSE is to study the flow structures result- 
ing from the Marangoni instability under a zero grav- 
ity level when the fluid is a one-component liquid 
or when it consists of a non-reactive binary mixture 
subjected to Soret effect. Such an instability may occur 
when a liquid material exhibits a free surface subjected 
to a surface tension effect. The variations of tem- 
perature and/or concentration along the free surface 
induce surface tension gradients which act as surface 
driven forces and tend to pull the fluid along the 
surface. We study the onset of convection in a rec- 
tangular cavity with a constant temperature imposed 
on the lower rigid boundary and a constant heat flux 
on the upper free surface. Above a critical temperature 
difference between the bottom and the top, the ther- 
mal and viscous dissipative processes are not sufficient 
to stop the fluid motion which arises, for example, 
from the natural temperature fluctuations along the 
free surface. Thus, above some critical values of the 
Marangoni number Mac, cellular patterns can be 
observed and are usually referred to as the Mar- 
angoni-BCnard instability. The critical Marangoni 
values of the first primary bifurcation to a steady state 
were first calculated analytically by Pearson [1] in the 
case of an infinite horizontal layer. Pearson’s analysis 
is subjected to the assumptions that the interface is 
undeformable and that there are no buoyancy forces. 
The early study accounting for both buoyancy and 
surface tension effects on a fluid layer was performed 
by Nield [2]. Theoretical extensions of Nield’s model 
have been conducted by Davis [3], Scanlon and Segel 
[4], Cloot and Lebon [SJ, They particularly pointed 
out that for a sufficiently large Marangoni number, 
convection is possible even if there is a stabilizing 

effect of the gravity force (negative Rayleigh number). 
Large differences with the previous works have been 
observed in studying systems for which the surface 
deformation is permissible (Striven and Sternling [6], 
Smith [7], Goussis and Kelly [S], Davis and Homsy 
[9], Castillo and Velarde [lo]). Those works pointed 
out that, when the Marangoni number is less than 
a critical value, a deformable interface with a given 
capillary number leads to a stabilization compared to 
a plane interface. 

Most of the previous developments are restricted to 
layers having an infinite horizontal extension. The 
effect of the lateral walls has been studied by means 
of non-linear analysis. The early analysis is due to 
Rosenblat et al. [l l] who exhibited the pattern selec- 
tion for different aspect ratios in a three-dimensional 
cavity. Particular attention is given to double bifur- 
cation points for particular aspect ratios where two 
modes of different wavelengths compete. The authors 
also replace the ‘no-slip’ condition at the side walls by 
the idealized slippery condition. A comparison 
between these lateral boundary conditions in a two- 
dimensional cavity is carried out by Dijkstra [12, 131 
who found that in comparison to ‘slippery’ conditions 
on the lateral walls, ‘no-slip’ conditions stabilize the 
system leading to a greater critical Marangoni 
number. 

The study of Marangoni flows can also be per- 
formed in the case of a binary mixture subjected to 
Soret effect which is the diffusion of species under 
the effect of temperature gradients in addition to the 
classical species diffusion (Fick’s law) [ 141. Conse- 
quently, the concentration gradients are formed via 
the Soret effect in response to the applied thermal 
gradients rather than imposed externally by the 
boundary conditions. Performing a linear stability 
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NOMENCLATURE 

A aspect ratio, L/H T* modified dimensionless temperature 
L dimensionless mass fraction U dimensionless velocity component in 

(concentration) the x direction 
D solutal diffusivity I’ dimensionless velocity component in 

DS phenomenological Soret coefficient the z direction 

Df phenomenological Dufour coefficient .Y dimensionless horizontal coordinate 
H height of enclosure X modified dimensionless mass fraction 

J, heat flux : dimensionless vertical coordinate. 

JC mass Aux 

k, dimensionless critical wave number Greek symbols 
L length of enclosure “1 i , , yc partial derivative of surface tension, 
Ma Marangoni number ;‘, = l/fJ,,*?cr/C:T, 7, = l/a,,*?oii’c 
Ma modified Marangoni number I dimensionless vorticity 
Pr Prandtl number, II/K li thermal diffusivity 

4 algebraic heat flux applied on the free i thermal conductivity 
surface i, critical wavelength 

& dimensionless ratio of solutal to L’ viscosity 
thermal contribution to the surface \’ kinematic viscosity 
force I) density 

SC Schmidt number, ii/D r7 surface tension 
t dimensionless time streamfunction 
T dimensionless temperature modified dimensionless number Sh, 

analysis of the Rayleigh-BCnard convection in binary 
mixture with Soret effect, Knobloch [ 151 pointed out 
that such a problem is equivalent to the thermohaline 
convection studied by Nield [ 161 in the sense that there 
exists a linear transformation between one into the 
other. Extensions to realistic boundary problems were 
conducted by Hurle and Jakeman [ 171 and Knobloch 
and Moore [18]. There are few works dealing with 
Marangoni convection in Soret binary mixtures 
induced only by surface forces (i.e. under a zero grav- 
ity level). Castillo and Velarde [19] and Vaerenbergh 
er al. [20] performed a linear analysis in the situation 
of an infinite horizontal layer for which the interface 
is undeformable. They thus exhibited the expected 
wavelength for the first primary bifurcation and the 
corresponding critical value of the Marangoni number 
as a function of the ratio of solutal to thermal con- 
tribution to the surface force S,. As for a particular 
choice of (Ma, S,) the two contributions compete in 
an opposite way, oscillatory motions are predicted. 

Our study is a contribution to emphasize the role of 
the Soret effect in thermocapillary driven convection 
under a zero gravity environment. For simplicity, we 
assume that the interface is undeformable. We restrict 
ourselves to a two-dimensional bounded cavity as it 
is known that two-dimensional roll patterns are those 
predicted for a three-dimensional rectangular cavity 
having the shorter side comparable to the depth and 

the longer side larger than the depth [I 11. 
First of all, we consider a homogeneous liquid (pure 

thermal case). As the onset of convection is entirely 
controlled by the Marangoni number, particular 

attention is given to the influence of the Prandtl num- 
ber and the aspect ratio of the cavity on the flow 
structure. The evolution with the Marangoni number 
is considered for a situation with an aspect ratio A = 4 

with the determination of bifurcations up to a time 
dependent flow. 

In a second part we consider a binary mixture and 
we introduce the thermal diffusion of species. Steady 
and time periodic flows are computed. For steady 
situations particular attention is given to the sym- 
metry properties and the wavelength of the flows. 
Very interesting behaviours are obtained in situations 
where time dependent flows occur as first bifurcation. 

2. FORMULATION 

We consider a horizontal rectangular cavity with 
an aspect ratio A = L/H (where L is the length and H 

the height of the cavity) filled with an incompressible 
Newtonian binary fluid mixture (Fig. 1). The upper 

w = 0 dcldz = dT/dz =l 

T=-0.5 u=w=O A 
d&z = dT/dz 

FIG. 1, Cavity configuration. 



Marangoni-Btnard instability in microgravity conditions 1547 

boundary is a plane free surface subjected to a con- 
stant normal heat flux q while the bottom boundary 
is a rigid wall maintained at a constant temperature 

T0. 
In microgravity conditions, there are no external 

forces and the onset of convection is due to surface 
tension which is supposed to vary linearly with mass 
fraction and temperature : 

c = o,(l+~,(T-T,)+~,(c-c,)) 

where y-r and yc are constants : 

(1) 

Considering a non reactive binary mixture, we use 
the general relations between the heat and mass flux 
and the thermodynamic forces [14] : 

where Ma is the Marangoni number and S, the ratio 
of solutal to thermal contribution to the surface force : 

Jq = -1VT-pDfVc 

J, = -pDVc-pD,VT 

Ma = AT-ff*%*y, 4 *yc 
) s,=-- 

P’V’K D*YT' 
(6) 

(3a, b) 

where i is the thermal conductivity, D the mass diffu- 
sivity, D, and DC the phenomenoiogical coefficients for 
the Soret and Dufour effects, respectively. We suppose 
all the coefficients to be constant in the range of tem- 
perature and concentration expected and we neglect 
the Dufour effect (Of = 0). The problem is non-dimen- 
sionalized by using HZ/v, H, v/H, AT and AC as scale 
quantities for time, length, velocity, temperature and 
concentration. AT = -qH/L is the temperature 
difference resulting from the constant flux applied on 
the free surface when the diffusive state is well estab- 
lished. AC is the concentration difference obtained at 
the Soret diffusive state as the result of the applied 
temperature difference, AC = - Ds*AT/D. The dimen- 
sionless temperature and concentration are taken as 
(T- T,)/AT and (c - c,,)/Ac, respectively, where c0 is 
the initial mass fraction and T,,, = T,+AT/2. The gov- 
erning equations result from the conservation laws for 
an incompressible fluid and lead to the following non- 
linear system in vorticity-streamfunction for- 
mulation : 

Under the effect of the constant heat flux on the homo- 
geneous mixture (c (x, z) = co), the concentration 
gradients build up until a final stationary state where 
the diffusion flux (equation (3b)) vanishes. Expressed 
in dimensionless form, the diffusive initial state is 
u = w = 0 and T(z) = c(z) = z-0.5. 

As the diffusive state is always a solution of the 
equations, the onset of convection is obtained by per- 
turbating the temperature gradient on the free surface 
with aT/dx(x = x0, z = 1) = A’. A weak roll is then 
created that will increase or decrease depending on 
the stability of the situation. The location and the sign 
of the perturbation will influence the configuration of 
the steady state : the sign of the quantity Ma. A’ indi- 
cates the direction of the surface force and thus the 
direction of the induced flow. The absolute amplitude 
A’ (chosen between 0.02 and 2) has less importance : 
similar evolutions are obtained in all cases. 

a,i+(U’V)il= v*i 

The problem is solved by using a Hermitian finite 
difference method with an alternative implicit direc- 
tion scheme [21] in a grid of 61 x 21 points on (x, z) 
directions for the aspect ratio A = 3, 121 x 21 points 
for A = 4, 6 and 161 x 21 points for A = 8, 10. Two 
algorithms are used, steady or time dependent, 
according to the nature of the expected flow. 

i+V’* = 0 

Pr*(a,T+(u*V)T) = V*T 3. RESULTS FOR A ONE-COMPONENT FLUID 

Sc*(&c+(~*V)c) = V*c-V*T (4a,b,c,d) 3.1. Infiuence of the aspect ratio 

valid in the domain IO, A[ x]O,l[ for t 2 0, where 
Pr = V/K is the Prandtl number, SC = v/D the Schmidt 
number, $ the streamfunction, u = d$/dz and 
w = -d$/dx, respectively, the x (horizontal) and z 
(vertical) component of the velocity, [ the y com- 
ponent of vorticity (normal to the cavity). The bound- 
ary conditions are ‘no-slip’ conditions on the rigid 
walls and insulating conditions on the two lateral 
boundaries. The normal mass flux is zero on the 
boundaries and a stress resulting from surface tension 

As it is established that ‘no-slip’ conditions on the 
lateral walls stabilize the system, the Marangoni num- 
ber is taken equal to 100, above the critical value 
Ma, = 80 calculated by Pearson [l] in the case of an 
infinite horizontal layer. 

Numerical results are presented by the plot of 
streamlines and iso-values of the temperature for 
Pr = 0.6, A = 3,4, 8, 10. Figure 2(a) shows the multi- 
roll structure of the flow. As an entire number of 
rolls has to fit in the cavity, the mean wavelength 
(corresponding to two counter-rotating rolls) changes 

is applied on the free surface. We obtain the following 
system for the boundary conditions : 

atz=O: 

ac az- 
7--O.& $=u=~=O, -=- 

az aZ 

atz= 1: 

$=w=O, $$I, 

atx=Oandx=A: 

$=u=w=O, g=s=O (5a,b,c) 
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l-b 

3-b 

(a) 

3-b 

4-b 

4-a 

4-b 

FIG. 2. lsovalues of the streamfunction (a) : 25 isovalues between the mmimum and the maximum indicated 
in Table I, and isovalues of the temperature iield (b): 20 isovalues between -0.5 and the inaximum 
indicated in Table 1 and located on the free surface. for Pr = 0.6. Ma = 100 and (1) A = 3. (2) .4 = 4, (3) 
A = 8. (4) A = IO. Two solutions are obtained in the cases (I). (3), (4) by changing the sign of the 
perturbation A’ (which is applied on the free surface to initiate the convective state): (a) A’ = +2, (b) 
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Table 1. Mean wavelength of the flow structure, maximum 
($+) and minimum ($_) of the streamfunction and 
maximum of the temperature field (T,,,) as a function of the 
aspect ratio of the cavity. (a) and (b) refers to the two 

solutions obtained 

Aspect 
ratio Wavelength *- $+ T,,, 

3(a) 3.0 -0.7542 0.7542 0.5873 
3(b) 3.0 - 0.7073 0.7073 0.5891 
4 4.0 -0.5219 0.5219 0.5728 

g(a) 3.2 -0.8962 0.9057 0.6106 
g(b) 3.2 - 0.9057 0.8962 0.6106 
IO(a) 3.3 -0.9036 0.9037 0.6108 
lo(b) 3.3 -0.8578 0.8579 0.6113 

when the aspect ratio is modified (Fig. 2). But the 
values are around the value obtained by Pearson [l] 
for an infinite layer : A, z n (k, x 2). Due to the sur- 
face tension drag along the interface, each roll is not 
symmetric: the flow is stronger in the zones where it 
goes downward. The deformations of the temperature 
field are induced by the flow (Fig. 2(b)). As the tem- 
perature is destabilizing, a deformation near the free 
surface in the direction of the vertical Aow induces 
two opposite horizontal temperature gradients which 
generate two contrarotative rolls. 

Due to the different boundary conditions between 
the bottom and the top, the only symmetry of the 
original problem is a vertical axi-symmetry S, (reflec- 
tion with respect to the vertical line x = A/2). For a 
given aspect ratio, two configurations with opposite 
senses of rotation of the cells can be expected. Effec- 
tively, by changing the sign of the initial perturbation 
A’, two solutions have been obtained in the cases 
A = 3, 8, 10. For A = 8, an odd number of cells is 
obtained. Each of the two structures has lost the ver- 
tical symmetry but one is the image by the S,-sym- 
metry of the other (they are S,,-symmetry related, Fig. 
2(a) (case 3)). For A = 10 and A = 3 an even number 
of cells is obtained (Fig. 2(a) (cases 1 and 4)). Each 
configuration is S,-symmetric but they correspond to 
different structures (see values of $ in Table 1). This 
is in good agreement with the assumption that the 
ensemble of possible solutions has to be invariant 
under the broken symmetry of the original problem. 
This symmetry requirement for the ensemble of poss- 
ible bifurcated solutions constrains the form of the 
amplitude equation. Thus, the bifurcation to an even 
number of cells which does not break the vertical axi- 
symmetry S, (A = 3, 10) is a transcritical one with two 
non-symmetry related branches : a subcritical branch 
which gives rise to an hysteresis and a supercritical 
one which is the less convective (for a given JUG). On 
the contrary, the bifurcation to an odd number of cells 
which breaks the S,-symmetry property (A = 8) is a 
pitchfork bifurcation with two supercritical S&-related 
branches. Winters et al. [22] discussed the s~rnet~ 
properties of the bifurcation to convective Row in such 
Marangoni situations and Dijkstra [13] gave bifur- 

cation diagrams (only the thermal condition at the 
upper boundary is slightly different). Their results are 
in good agreement with those presented here. 

In the case A = 4, only the subcritical solution (two- 
cell pattern with centre upflow) is obtained. The super- 
critical solution with centre downflow is not obtained 
even if we force it by imposing a positive perturbation 
at the point x = Aj4 on the free surface. The initial 
state evolves to a three-roll configuration before 
reaching the two-roll solution we have just described. 

This particular behaviour at A = 4 is related to the 
vicinity of the transition between two and three rolls. 
In a ‘slippery’ model, the typical dimensionless wave- 
length of a two-roll configuration is around 3.1 for a 
Biot number equal to zero as in our situation [ 131 (the 
same value is obtained in an infinite layer [l]). As an 
entire number of rolls has to fit in the cavity, the two- 
and three-roll configurations compete for an aspect 
ratio around four. This situation looks similar to the 
one well pictured in Dijkstra’s study [ 131 for an aspect 
ratio of three with Bi = 20 (Fig. 3). (For this value of 
Bi and in a ‘no-slip’ model, the typical dimensionless 
wavelength is about 2.4, which still gives for an aspect 
ratio of three, a competition between two- and three- 
roll configurations.) The first primary bifurcation is 
a pitchfork bifurcation to a three-roll structure and 
occurs for MalX. It gives rise to two unstable sub- 
critical branches which coalesce giving a closed curve 
located below J.&Z,,. The second primary bifurcation 
is a transcritical bifurcation to a two-roll structure 
and occurs for Ma,2 > Mu13. As the trivial branch is 
one time unstable for Mai3 < Ma < Ma,,, the super- 
critical branch is one time unstable and the subcritical 
branch is two times unstable. The subcritical branch 
intersects the closed curve for Mazz through a pitch- 
fork bifurcation and becomes stable after a saddle 
node point. Thus, only one stable two-roll con- 
figuration with centre upflow can be obtained which 
corresponds to the subcritical branch. This is what we 
obtain for an aspect ratio A = 4 and a Biot number 
Bi = 0. The difference of aspect ratio with our situ- 

t 

FIG. 3. Possible sketch of the bifurcation for an aspect ratio 
A = 4 (ref. [13]). On the vertical axis is plotted the velocity 

at a given point of the cavity. 
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ation is compensated by the changes with the Biot 
number which affect the characteristics of the neutral 
mode. 

3.2. Injuence qf the Prandtl number 
It can be proved by writing the linear perturbation 

equations with a choice of dimensionless time and 
velocity in H’/K and K/H, respectively, that the critical 
~arangonj number of the first primary bjfur~ation to 

a steady state does not depend on the Prandtl number. 
Increasing the Prandtl number from Pr = 0.6 to 10 in 

the case A = 4, Ma = 100 does not change the struc- 
ture of the flow but leads to a diminution of the flow 
intensity expressed in v/W units. Figure 4 shows the 
evolution of the temperature and velocity on the free 
surface in six situations with different Prandtl num- 
bers ranging from 0.6 to 10. The maximum of the 
temperature field is located on the lateral boundary on 
the free surface and the minimum of the free surface, in 
the middle of the cavity. It can be noted that the 
nlaximum of te3nperature difference and the tem- 
perature gradient on the free surface increase with 
the Prandtl number whereas the maximum velocity 
decreases (see also Fig. 5). This could be a con- 
tradiction but the effect of the Prandtl number (1 ,‘PY) 
in the free boundary condition (equation (Sb)) 
restores the contribution of the temperature gradient 
to the surface force : duidl, which represents the sur- 
face force, is a decreasing quantity with the Prandtl 
number. The plot of the maximum velocity as a func- 
tion of the maximum temperature difference is pic- 
tured in Fig. 5. In the range of the Prandtl number 
from 0.6 to 10, a linear evolution is established with a 
decrease of t’,,, in Pr liy (Fig. 5). 

3.3. Icfiuence qf the Marangoni number for atz aspect 
ratio A = 4 and Pr = 0.6 

For a Marangoni number equal to 110 the system 
loses the S,-symmetry. Two SL\-symmetry related 
stable solutions resulting from a pitchfork bifurcation 
from the previous steady state are obtained (Fig. 6). 
For a Marangoni number greater than 115 these 
branches bifurcate to an oscillatory motion through a 
Hopf bifurcation. The Hopf characteristic is given by 

the fact that, for a Marangoni number lower than I1 5, 
steady solutions are the result of a damped oscillatory 
motion with a constant period (for a given Marangoni 
number). Thus, the steady solutions bifurcate with a 
finite period that decreases with the increase of the 
Marangoni number. The flow structure has been com- 
puted for Ma = 150 and is presented through a period 
T = 1.5 (viscous time) in Figs. 7 and 8. As it can be 
seen, a quasi-constant roll is always present on the 
right of the cavity. In the left part, there is an evolution 
between one and three rolls. The two-roll situation at 
I = 0 with centre upflow presents a stronger and larger 
left roll. The onset of the perturbation that leads to 
the appearance of two additional contrarotative rolls 
between the two previous ones is induced by a per- 
turbation of the temperature field on the free surface, 

located near the middle of the cavity in the weakly 
convective right part of the left roll. The evolution of 
the temperature profile on the free surface described 
in Figs. 9(a) and (b) shows the amplification of this 
perturbation and its characteristic of left-travelling 
wave, which leads to the swelling of the right new roll 
until it reaches the left boundary. 

4. RESULTS FOR A TWO-COMPONENT FLUID WITH 
SORET EFFECT 

4. I. Preliminary remarks 
The boundary condition on the free surface can be 

regarded as the sum of two surface forces acting on 
the fluid motion : 

;; = .f;u,f‘,ce = fr + f;. (7) 

where .f; is the thermal contribution and jc the mass 
fraction defined as : 

Mu ar 
.fI = - - 

Mu PC 

Pr r?.u 
,f, = ---&, ;l’ 

PI (8) 

Ma and S,. previously defined, are algebraic quan- 
tities as the applied temperature difference AT and the 
quantities 7 rr ;‘c can be positive or negative. Con- 
sidering the diffusive state, suppose that a fraction of 
fluid is moved up from the bottom to the top of the 
cavity. Temperature and concentration gradients are 
thus created and induce two contributions to the sur- 
face force. As the boundary conditions fur T and i’ 

are different, four situations have to be considered 
[ 191 : (a) Ma < 0, &,, > 0 : the two contributions tend 
to oppose the movement. The situation is stable and 
no convection can occur. (b) Ma > 0, Shz < 0: only 
the solutal contribution has a stabilizing effect and 
time dependent flows are predicted by the linear stab- 
ility analysis [i 91. (c) Ma < 0, S, < 0 and (d) Ma > 0. 
&,, > 0 : in those cases, the linear stability analysis for 
an infinite horizontal layer predicts that the system 
bifurcates to a steady state. 

The dimensionless parameters which control the 
onset ofconvection for a steady state can be obtained 
in a more general form than the one used in the litera- 
ture by using the following change of variable : 

I I 
,y=,-(C-T) T*=P;T. 

The linearized equations lead (for a steady state) to 
the following system : 

vp-V’c = 0 

w=v”T* 

ii’ = V’X 

v-z*=0 
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(a) do.00 
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1'X 
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0 0.6 
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0 2 
0 4 
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* 10 

FIG. 4. Temperature (a) and velocity (b) on the free surface as a function of the Prandtl number 
close to the labels (A = 4 and Ma = 100). 

00.6 
A 1 
0 2 
0 4 
+ 8 
* 10 

indicated 

where v (u, IV), p, T*, X are the perturbations of the atz=l 
diffusive state. The boundary conditions become : ax a7-* 

-~---_~w()o. Ula,b,c) 
at x = 0 and x = A a2 a2 

ax aT* 
-_=.--=u=w=O 

The stress boundary condition on the free surface is 

ax ax written in the following form : 

atz=O $&. (fg+J,. gJ (114 

with 



The tlow has been computed with Pr = 0.6. 
SC~ = 60. Mu = 30, S,, = 0.03 and for the aspect ratios 
A = 3,4.6,8. Figure 10(a) shows a multiroll structure. 
The distortions of the isovalues of concentration (Fig. 
IO(c)) are those induced by the flow in the direction 
of the movement. The temperature held (Fig. 10(b)) 
is less distorted than the concentration field. This is 
due to the particular choice Sc,‘Pr I= 100. 

01 I I I I I I 

0 2 4 6 8 10 12 
The S, symmetry expected near the threshold for 

Prandu nwnber Pr 
an even number of rolls is obtained for A = 3 and 4 

with two rolls in each case. For A = 8, the flow struc- 
ture with four rolls has lost the S; symmetry. This 

Tmax - Tmin 
(xl 00) 

could be the result of a secondary bifurcation. The 

19 ?- 
mean dimensionless wavelength of the flow structure 
is equal to 3 for A = 3 and to 4 for .-I = 4, 6 and 8. 

18 - These values arc smaller than the one given at 

17 - 
S, = 0.03 by the linear theory for an infinite hori- 
zontal layer (i 2 6.2) [20] which would lead for 

16 - example to a one-roll structure for .-I = 3 and to a 
two-roll structure for A = 6. 

15 - 
For an aspect ratio A = 4. we computed the flow 

14 - for S, = 0. I5 and MU = 15. initiating the solution 

13 - 
with the one we obtained for .SM = 0.03 (Fig. 11). WC 
still obtained a two-roll structure as for S’,, = 0.03 

‘20 
I I 1 I I I 
2 4 6 8 10 12 

and in the pure thermal case. but the S, symmetry is 

Prandrl nwnber Pr 
slightly broken. As the destabilizing solutal con- 
tribution to the surface force increases with Sk,, the 
critical Marangoni number decreases. The wave- 

7Jma.x (xl 0) 

50 - 

number of the flow structure decreases too. Fat 
Sk, > 0.1 the linear study for an intinite horirontal 
layer predicts that the wavenumber becomes equal 

40 - 
to Lero [20]. This asymptotic behaviour can become 
clearer by noting that the thermal contribution 
becomes Lero and that the motion is entirely con- 

30 - trolled by the soiutal gradients. lJsing the first order 
equations (equations (IO). (I I)) and the pre- 

20 - ponderance of the solutal contribution (I//~ --f 7~ ). the 
free surface boundary conditions for the first order 

10 - perturbation of concentration becomes : 
(10) 

0’ 1 I 1 I I I 1 
12 13 14 15 16 17 18 19 

Tmar - Tmin (x100) 

FIG. 5. Maximum of velocity and maximum of the tem- (l2a.b) 
perature difference along the free surface as a function of the 
Prandtl number and maximum of velocity as a function of As the conservation law of energy has no effect on 
the maximum of the temperature difference along the free the fluid motion, this problem is similar to the pure 

surface (A = 4. Ma = 100). thermal situation (with T and Ma replaced by X and 
MatiM, respectively), except for the boundary con- 
dition on the rigid bottom (see equation (12(b)). As 
the pure thermal problem, such a problem admits a 
critical value Mao. We can then write : 

This formulation shows up that for a given geo- Mu zMa,, (inthelimiti, --t x). 
*iVl 

(13) 

metrical configuration, the stability only depends on 
(Ma, I,!I~). Also, the critical values (Ma, S,) of a bifur- This is the asymptotic domain where the wavenumbet 

cation to a steady state for different choices of SclPr becomes zero. A situation can be in the asymptottc 
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can be deduced from the general evolution 
Mu = /Ma(lj+r). 

4.2. Sre~i&~ corzrectio~l 
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FIG. 6. Isovalues of the streamfunction (a) and isovalues of the temperature field (b) in the case A = 4, 
Pr = 0.6 and Mu = 110. Two S,-symmetry related solutions resulting from a pitchfork bifurcation from 

the primary branch are obtained. 

domain only if the ratio Sc/Pr is sufficiently high (S, 
has then to be not too small). This is the case with 
ScjPr = 100 for which the wavenumber is zero above 
S, = 0.1. The asymptotic domain corresponds to an 
infinite wavelength which should give rise to an 
expected one-roll structure we have not obtained even 
if we decreased the Marangoni number just above the 
critical value estimated about 5 for S, = 0.15. 

We simulated situations with S, = 3 and Mar- 
angoni numbers far from the threshold (Ma x 30). 
For such values, the system loses the symmetry prop- 
erty and bifurcates to a two-roll structure (for A = 4) 
where one of the two rolls is longer than the other. In 

fact the length of the longer roll depends on where the 
perturbation of the initial state is applied on the free 
surface. 

We computed the flow with Pr = 0.6, SC = 60, 
Mu = -30, S, = -0.03 for A = 4. The result is pic- 
tured in Fig. 12. In this situation, the temperature 
contribution to the surface force is stabilizing and the 
motion is due to the destabilizing solutal contribution. 
For such a choice of (Ma,&,), the surface force is 
mainly due to the concentration gradients (Fig. 13). 
The velocity and the maximum of the streamfunction 
are smaller (see Fig. 13) than in the similar case with 
Mu = 30 and S, = 0.03 given in Fig. 10 (case 2) (the 

-2.02 1.62 0.18 -1.81 1.62 

1=13T/18 

A 
L=lBT/16 

17 

t=4T/16 I I t=lOT/16 

-1.30 -0.04 1.34 

u 

-1.23 0.02 -0.63 1.33 

FIG. 7. Evolution of the isovalues of the streamfunction through a period T = 1.5 (viscous time) for A = 4, 
Ma = 150 and Pr = 0.6 (30 isovalues from -2.5 to 2.5). The maximas of the streamfunction, indicated 

above the cavity, are those of the corresponding roll. The instants are referred below the cavity. 
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t=3T/lB 
I 

t=lST,‘ltl 

FIG. 8. Evolution of the isovalues of the temperature field through a period T = 1.5 (viscous time) for 
A = 4, Ma = 150 and PF = 0.6 (IO isovalues from --0.5 to the maximum of each temperature field). The 

instants are referred below the cavity. 

product Mtr * S, which drives the solutal contribution 
to the surface force is the same in both cases: 
Ma* S,, = 0.9). These smaller values are a conse- 
quence of the stabilizing effect of the temperature. For 
stronger values of )S,/ (beIonging to the asymptotic 
domain), such ‘corresponding’ cases will be almost 
similar as the temperature will have no more effect on 
the Row. 

4.3. Time dependent conuectiom 
Time dependent convection can be obtained as pri- 

mary bifurcation for positive values of Mu and nega- 
tive values of SM. The Aow has been computed with 
Pv = 0.6, SC = 60, Ma = 100 in the cavity with A = 4. 
As the period of the oscillations decreases with 
increasing /SMj [?O], the numerical simulation is com- 
puted with SM = -3. 

Initiating the Row with the solution obtained in 
the pure thermal case, the system evolves towards a 
periodic flow with a period T = 0.808 viscous time. 
The time evolution which keeps the vertical symmetry 
corresponds to successive transitions between the two 
two-roll steady configurations expected at SM = 0 for 
,4 = 4 (Fig. 14). 

For a better understanding, the physical process of 

she oscillatory motion with Soret effect can be first 
phenomenologically explained with buoyancy con- 
siderations. For such a choice of Prandtt and Schmidt 
numbers, the characteristic time of solutal diffusion is 
longer than the thermal time. Thus, the distortions of 
the isovalues of concentration, induced by the Row, 
are stronger than than those of the temperature field 
and the distorted field is badly restored by diffusion. 
As the temperature contribution is stabilizing, its dis- 
tortions in the direction of the flow tend to accelerate 
the nlovement whereas the same distortions of the 
concentration field tend to slow it down. 

When the isovalues of temperature are distorted in 
the direction of the flow, they speed the process up. 1f 
we suppose that, at this moment, there is no defor- 
mation of the concentration field. the flow intensity 
becomes stronger. But, in the same time, the dis- 
tortions of the concentration, which have a stabilizing 
effect on the fluid motion, are gradually dragged by 
the flow. As soon as the two fields are distorted in the 
direction of the flow. the velocity decreases under the 
stabilizing effect of the concentration, until the 
rotation sense of the motion is inverted. During this 
process, the distortions of the &values begin to 
decrease following the decrease of the flow intensit\c, 
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lb) 5 

x-t-n- 1 
I c 

22 

FIG. 9. (a) Evolution of the temperature profile on the free surface for Pr = 0.6, A = 4 and Aria = 150 
through a period T (16 records separated by a time At = T/16 describe a period). (b) Same evolution as 

for (a) but each of the fields is translated along the x axis with one unit on the right. 

partic~arly for the tem~rature field well restored by 
diffusion. Thus, as the rotation sense of the motion is 
inverted, the isovalues of the temperature are soon 
distorted in the direction of the flow whereas the iso- 
values of concentration are still distorted in the pre- 
vious direction of the Aow. The two contributions act 
in the same way and tend to increase the fluid motion. 
The distortions of the isovalues of the concentration 

are gradually induced in the direction of the flow and 
half a period is then described. 

In the case with free surface, Fig. 14 shows that the 

change of the direction of rotation occurs through the 
appearance of two contrarotative rolls which grow 
until they replace the initial ones. In such case, the 
flow is driven by surface tension forces created by 
gradients due to the distortions of the isovalues near 
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l-a 

2-a 

3-a 

(a) 4-a 

2-b 

3-b 

lb) 

4-b 

FIG. IO. Isovalues of the streamfunction (a). the temperature (b) and the concentration (c) lields with 
Ma = 30, S, = 0.03, Pr = 0.6 and SC = 60 (25 isovalues are plotted between the minimum and the 
maximum of each configuration for the streamfunction and the concentration, I5 for the temperature) for 

the aspect ratios : (I) A = 3. (2) .4 = 4, (3) A = 6. (4) A = 8. 
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4-c 

FIG. IO.-continued. 

FIG. 1 I, Isovalues of the streamfunction, the temperature 
and the concentration fields for A = 4, Pr = 0.6, SC = 60, 
Mu = 15, S, = 0.15 (20 isovalues between the minimum and 
the maximum arc plotted for the streamfunction, 15 for the 

temperature and the concentration). 

FIG. 12. Isovalues of the streamfunction, of the temperature 
and the concentration fields for A = 4, Pr = 0.6, SC = 60, 
Ma = -30, SM = -0.03 (20 isovalues between the mini- 
mum and the maximum are plotted for the streamfunction, 

15 for the temperature and the concentration). 
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the free surface. These distortions (particularly those 
of the concentration field which are first responsible 
for the inversion of the flow) occur first in the zone 
where the flow goes down after having been accel- 
erated along the free surface. The new rolls are then 
generated locally in these places and they gradually 
grow following the displacement of the concentra- 
tion distortions across the cavity (travelling wave 
behaviour depicted in Figs. IS(a) and (b). Due to the 
change of the direction of rotation, the new pair 
appears alternatively in the center and in the corners 
of the cavity (Fig. 14). 

Figure 1 S(c) tries to depict the inversion of the flow 
in the left half part of the cavity. At step 1, T and c 
are still distorted in the previous direction of the flow 
(anti-clockwise roll of step 9). Thus the stabilizing 
thermal contribution to the surface force (l-2’) tends 
to accelerate the flow in this direction whereas the 
destabilizing solutal contribution (l-c) opposes the 
movement and creates a new contrarotative roll in 
this left part of the cavity. At step 2, the new clockwise 
roll has settled. It already induces temperature dis- 
tortions in such a way that the temperature gradients 
now drive the new flow (2-T) as well as the con- 
centration gradients (2-c). At step 3, the clockwise roll 
is stronger. The favourable thermal contribution has 
increased (3-T), but the concentration field is now 
affected by the clockwise roll and generate con- 
centration gradients (near x = 2) opposed to the 
motion (3-c). This solutal contribution will increase 
and generate at step 4 a global contribution opposed 
to the movement near x = 2 (Fig. 15(b)). This cor- 
responds to the initiation of a new contrarotative roll 
near x = 2. 
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(a) 

0.505 
T 

0.500 X 

01 
A2 

(b) 0.495 -J 

FK. 13. Velocity (a), temperature (b) and concentration (c) profiles along the free surface with A = 4. 
Pr = 0.6, SC = 60 for the two situations (I), (Ma, S,) = (30,0.03) and (2), (Ma, S,) = (- 30, -0.03). 
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FIG. 13.~-continued, 

t=ST,‘l Cl 

FIG. 14. Time evolution of the isovafues of the str~mfunction (a), temperature (b) and concentration (c) 
fields through a period T for the time-dependent situation corresponding to a primary bifurcation for 
A = 4, Pr = 0.6, SC = 60, Ma = 100, S, = - 3. The plots correspond to successive times I = n 9 T/l0 with 
0 < n $ 9 (20 isovalues between -0.5 and 0.5 for the streamfunction, 15 between -0.5 and 0.7 for the 

temperature and I I between -0.5 and 0.5 for the concentration. 
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t=T/tO 

t=2T/10 

t=8T/lO 

t=?T/lO 

t=bT/lO 

(bf 

t=5T/10 

t=T/llJ 

t=2T/lO 

t=3T/lO 

t=7T/lO 

5. CONCLUSION number on the flow intensity has been investigated 
for a cavity with an aspect ratio A = 4 and a fixed 

Marangon~ instability has been studied numer~~dlly Marangoni number iMa = 100. WC exhibited a linear 

in a two dimensional bounded cavity for which the dependence of the maximum veiocity on the free sur- 

free surface is assumed to be plane. In the case of a face with the maximum temperature difference along 

one-component fluid, the symmetry properties have the free surface. In the case A = 4, Pr = 0.6, a further 

been discussed and a good agreement with the theory increase of the Marangoni number leads first to a 

has been pointed out. The influence of the Prandtl secondary steady bifurcation with breaking of 
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(a) 

Fro. 15. The two upper curves (a) and (b) describe the time evolution of the surface force &/& along half 
the free surface (from n = 0 to 2) through a period T (the numbers (n) refer to the situations plotted in 
Fig. 14 (I = n * r/10)). The travelling wave characteristic of the two transitions is thus pictured. The curve 
{c) describes the time evolution of the thermal and solutal contributions to the surface force, respectively, 
Mu* Pr-’ * 87’/13x and Mu* Pr-' . Shl * &/dx through the records 1,2 and 3. The creation of a new roll near 

x = 2 is thus depicted. 
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symmetry, and then to a Hopf bifurcation giving rise expected, but the wavelengths in steady situations are 
to oscillatory motions which have been computed 
through a period for Mu = 150. 

smaller. For most of the steady situations we 

In the case of a binary mixture subjected to Soret 
computed, the system loses the symmetry property. 

effect, direct simulations are compared to the struc- 
This can be related to secondary bifurcations which 

tures expected by the linear theory. The flow behav- 
occur close to the onset. Asymptotic behaviours (cor- 
responding to the preponderant of the solutal con- 

iours (steady or time dependent) correspond to those tribution) are discussed in a more general dimen- 
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sionless form than the one generally used in this 
problem. When the thermal contribution to the sur- 
face force has a destabilizing effect on the fluid motion 
and the solutal contribution has a stabilizing effect. 
oscillatory motions are predicted as primary bifur- 

cation and have effectively been obtained. Such behav- 
iours are well explained in terms of competition 
between thermal and solutal forces. 
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